
A comprehensive guide to generating stronger 
and more powerful evidence
This white paper seeks to increase understanding of the factors that inform the design and conduct of causal 
studies in real-world settings. Authors describe in greater detail how the design of randomized controlled trials 
(RCTs) promotes causal inference and how ‘target trial’ thinking can support the use of real-world evidence (RWE) 
studies to estimate causal effects. Also included are specific considerations for the design of rigorous causal RWE 
studies as well as selected Carelon Research case studies that solve common RWE design challenges.
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Real-world studies complement randomized controlled trials 

The gold standard 

RCTs are considered the gold standard for identifying 
causal relationships between exposure to clinical 
interventions and hypothesized outcomes due to 
strong internal validity. RCTs use randomization of 
study subjects to induce an approximately equal 
distribution of potentially confounding factors across 
treatment and control groups. RCTs allow investigators 
to directly control the timing, dosage, and duration of 
the intervention and the measurement of endpoints.

For these reasons, high-quality RCTs are commonly 
considered the preferred approach for measuring  
the causal effects of medical treatments subject to 
regulatory approval and evidence-based health 
insurance coverage decisions.

Limitations of the gold standard 

At the same time, RCTs may also suffer from sources 
of bias, such as cross-over and differential attrition 
across arms, and limited generalizability. They may  
be impractical due to high cost, time, and ethical 
concerns. These limitations of RCTs have stimulated 
interest over the past several decades in using 
observational data collected in real-world settings  
to estimate causal relationships between healthcare 
interventions and health-related outcomes in a  
timely, efficient, and externally valid way.

The potential of RWE studies

In many situations, information about causal 
relationships can be obtained from observational 
healthcare data, such as administrative data from health 
insurance plans, national health surveys, and public 
health surveillance programs. Such data can be used to 
generate rigorous evidence about causation in the 
real-world circumstances in which interventions will be 
used and inform economic and delivery system factors 
that influence effectiveness in real-world settings. This 
approach is growing in importance, driven by the need 
for generalizable and rapidly delivered RWE to inform 
regulatory, payer, and patient/provider decision making.

The ‘target trial’ approach

In order to apply RCT-based causal inference best 
practices to RWE studies, it can be valuable to design  
a hypothetical RCT protocol or ‘target trial’ that 
describes eligibility criteria, treatment administration, 
treatment assignment, specification of outcome 
measures, length of follow-up, causes of study attrition, 
causal contrasts (e.g., intent-to-treat or per protocol), 
and statistical estimation methods.9-12 Doing so 
promotes understanding of and alignment between  
the study outcome of interest and the design and 
implementation of appropriate real-world studies, 
which reduces the potential for common biases.
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Considerations when designing real-world evidence 
studies to investigate causal relationships
Causal inference with observational healthcare data combines numerous theoretical and technical concepts;  
the existing methodological literature on this topic is rich, but can be complex and daunting. Carelon Research 
developed a step-by-step guide for causal study design that identifies and describes key conceptual issues of 
importance to researchers designing causal inference studies.

A step-by-step guide to causal study design

Acronyms: GEE, generalized estimating equations; IPC/TW, inverse probability of censoring/treatment weighting; ITR, individual treatment response; MSM, marginal structural model; TE, 

treatment effect

a. Ensure that the exposure and outcome are well-defined based on literature and expert opinion.

b. More specifically, measures of association are not affected by issues such as confounding and selection bias because they do not intend to isolate and quantify a single causal 

pathway. However, information bias (e.g., variable misclassification) can negatively affect association estimates, and association estimates remain subject to random variability (and 

are hence reported with confidence intervals).

c. This list is not exhaustive; it focuses on frequently encountered biases.

d. Only a selection of the most popular pharmacoepidemiological approaches is presented here. Other methods exist, e.g., g-computation and g-estimation for both time-invariant and 

time-varying analysis, instrumental variables, and doubly robust estimation methods. Program evaluation methods (e.g., difference-in-differences, regression discontinuities) can also 

be applied to causal questions in healthcare.

e. Online tools include, among others, an E-value calculator for unmeasured confounding (evalue-calculator.com) and the P95 outcome misclassification estimator (apps.p-95.com/ISPE).

Create directed acyclic graph (DAG)

• ‘Target trial’ thinking
• New user design with active comparator
• Choose estimator and missing data rules
• Confounder adjustmentd

• Time-invariant (’baseline’)
• Matching or weighting
• Best with propensity scores

• Time-varying
• Survival analysis with time-varying covariates
• Mixed models, GEE
• MSM with IPTW (if confounders are affected by 

prior treatment)
• Evaluate confounder balance
• IPCW to account for loss-to-follow-up/censoring

Plan QC and sensitivity analyses

• Test if model assumptions are fulfilled
• Use different estimand or estimator
• Quantitative bias analysise 

8

Define research questiona

Association 
Most biases disregarded by definitionb

Causal effect
Move to Step 2

1

Effect in whom? (Target population)

Average treatment effect (ATE)
ATE in the (un)treated (ATU or ATT)

Conditional ATE (subgroups)
Individual TE (ITR)

2

What kind of effect? (Causal contrast)

Intention-to-treat (ITT)
Per-protocol
As-treated 

3

Measure of effect? (Endpoint)

Scale: difference or ratio?
Outcome: risk, rate, hazard, odds, cost…?  

4

5

Explore the land of solutions

7
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Mediator

Exposure Outcome

Navigate the land of biases

• Measured confounding
• Unmeasured confounding
• Collider bias
• Selection bias
• Immortal time bias
• Protopathic bias (reverse causality)
• Healthy adherer effect
• Prevalent user bias
• Dependent/informed censoring
• Misclassification
• Effect modification
• Generalizability and transportability
• Etc.c 

6
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Define the research question in causal terms

If the research question is explicitly or implicitly causal rather than associative, observational RWE 
studies can and should be designed to provide such a causal estimate.4 A causal question should be 
explicit and easily identified using phrases such as “what is the effect of A on Y?”, “how does B affect 
Y?”, and “how does C influence Y?” More implicit causal questions might ask, “how would outcome Y 
be different, given that exposure B was different from the observed case?” Note that comparative 
effectiveness/safety studies ask a causal question by definition.

Estimand vs. estimator

The estimand is the causal effect of interest and is described in terms of required design elements: 
the target population for the counterfactual contrast (e.g., the Average Treatment Effect in the  
at-risk community)*, the kind of effect (e.g., intent-to- treat or per-protocol, representing different 
approaches to address changes to treatment during follow-up), and the effect/outcome measure 
(e.g., survival rates).† This concept is distinct from that of an estimator, which is a method of analysis 
 to compute an estimate (numerical value) of the estimand using the available data.13-16

Accounting for treatment changes

Both RCTs and real-world studies need to address treatment changes (e.g., non-adherence or 
switching) in the analysis. In most cases, an intent-to-treat (ITT) analysis is conducted, which assigns 
all outcomes to the treatment arm in which the patient was initially placed; this is sometimes 
interpreted as a conservative estimate of the treatment effect. It is possible to incorporate treatment 
changes and non-adherence during follow-up through an as-treated analysis, for example by 
censoring patients at the time of treatment change. Alternatively, as part of a more advanced 
approach, researchers can divide the follow-up period into time segments and measure the 
treatment and possible confounders separately in each segment. To better model real-world 
features such as medication management guidelines, researchers can introduce additional nuance 
by designing a per-protocol analysis with pre-specified treatment decision rules.

*The average treatment effect (ATE) is the difference in outcomes if every patient is given treatment A versus if every patient is given treatment B. One may also 
define the average treatment effect on the treated (ATT; the difference in outcomes if every patient who actually received treatment A had received treatment B 
instead) and its counterpart, the average treatment effect on the untreated (ATU). In an RCT with perfect covariate balance and treatment compliance, these 
effects are the same, but in observational data, the impact of selection bias and heterogeneous treatment effects across groups usually leads to divergence.

†An example of an estimand is: what is the average reduction in blood glucose over 1 year from initiation of drug class A among patients with existing type 2 
diabetes, compared to patients initiating drug class B, in the period 2020 to 2023?

Step 1

Steps 2  3  4
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Creating a directed acyclic graph

Observational real-world studies are subject to multiple potential sources of bias, commonly 
grouped into confounding, selection, measurement, and time-related biases.17 A practical first step  
in developing strategies to address threats to valid causal inference is to create a visual mapping  
of factors that may be related to exposure, outcome, or both (also called a directed acyclic graph or 
DAG).18 DAGs typically draw upon prior literature, exploratory data analysis, and subject matter 
expertise to elucidate potential confounders of the exposure-outcome relationship. Confounders can 
be time-invariant or time-varying and observed or unobserved, and a DAG can help distinguish the 
importance of each for the research question.

Identifying and mitigating biases

Typical potential biases, such as confounding by time-invariant (baseline) characteristics, can be 
addressed through appropriate study design and statistical methods (e.g., the use of an active 
comparator, new user design combined with propensity score-based matching or weighting‡ to 
achieve balance in observed baseline confounders).19,20 Researchers often use regression analysis to 
control for baseline confounding; propensity-score-based methods are preferred for this purpose, 
and, given the potential for other types of biases, regression typically does not, on its own, provide 
estimates suitable for causal inference.19

If the research question requires time-varying treatments (e.g., to account for treatment interruption 
or switching), propensity score-based covariate weights and censoring weights can be created 
based on the observed time-varying exposures and time-varying confounders and then 
incorporated into the analysis as part of a marginal structural model (MSM21,22).§ This approach 
allows researchers to address the bias of time-varying confounders and treatment-confounder 
feedback (e.g., when a medication impacts a biomarker that guides the selection of future treatment 
and the biomarker also affects the outcome of research interest).

Accounting for censoring

Patients in retrospective analyses are often censored due to limited follow-up associated with health 
plan disenrollment.** Such censoring can bias the analysis if it is related to patient characteristics 
(observable or unobservable) that are associated with the treatment and/or outcome. The effect  
of this dependent or ‘informative’ censoring can be mitigated by using censoring weights, which  
are estimated from the full population and incorporated into the outcomes analysis through inverse 
probability of censoring weighting. These weights can be applied to both ITT and as-treated 
analyses. In the case of as-treated analyses, they can also address bias due to informative censoring 
resulting from treatment discontinuation or switching.

‡ Weighting with propensity scores is referred to as inverse probability of treatment weighting (IPTW).

§ MSMs represent the most frequent model for handling time-varying exposures and confounders; others include g-computation and g-estimation (structural 
nested models). Note that MSMs are a class of models that can address time-invariant analyses as well (IPTW is a type of MSM).

** Alternatively, patients with limited follow-up may be excluded completely from the study, which can generate selection bias if the loss to follow-up is related to the 
exposure and/or outcome of the study.

Steps 5  6  7
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Sensitivity analysis

All research designs are built on several assumptions and involve trade-offs across methodologies. 
Sensitivity analysis is essential in understanding the uncertainty of study results (beyond those coming 
from statistical sampling uncertainty). Common examples of sensitivity analyses in comparative 
observational studies include modifying the study inclusion/exclusion criteria and using alternate 
methodologies to adjust for baseline confounding. Another type of sensitivity analysis seeks to quantify 
residual systematic bias.23-25 Examples of this quantitative bias analysis include the assessment of 
unmeasured confounding and the incorporation of validation study results in adjusting for variable 
misclassification.26-29 Online tools are increasingly available for this purpose, and the results can help to 
inform the research audience about potential study limitations stemming from residual systematic bias.

Step 8
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Research question

Does a new hormonal drug cause a higher risk of endometrial or breast cancer compared to existing 
hormone replacement therapies?

Causal inference challenges

Confounding by indication, informative censoring, prevalent-user bias, outcome misclassification

Solutions

Carelon Research researchers utilized multiple real-world databases and employed an active 
comparator, new-user design with propensity score matching to balance patient characteristics  
at the time of treatment initiation. In addition to the main analysis, the team conducted a variety of 
sensitivity and bias analyses to test the implicit assumptions of the study design. For example, to 
address the potential for overcounting cases due to erroneous or tentative (‘rule out’) diagnoses in 
claims, a claims-based algorithm was developed to identify endometrial cancer cases and validated 
with a review of patients’ medical records. Using the parameters estimated in the validation study, a 
quantitative bias analysis was applied to the main study findings to examine the potential for 
outcome misclassification bias.

Results

In the main analysis, the study team found a slightly higher rate of endometrial cancer but a lower rate 
of breast cancer among users of the new hormonal drug relative to existing hormone replacement 
therapies. Quantitative bias analyses demonstrated that the observed effects were unlikely to be 
influenced by outcome misclassification. This research was presented at the 2021 International 
Conference on Pharmacoepidemiology and Therapeutic Risk Management (ICPE), and a manuscript 
has been submitted.

Carelon Research’s expertise
Carelon Research has extensive experience applying causal study designs to real-world observational healthcare 
data. This section presents three case studies from our work with life science companies and payers to illustrate the 
application of advanced causal study designs and the generation of high-quality insights.

Case study #1
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Research question

Does adherence to a maintenance medication regimen among patients with chronic obstructive 
pulmonary disease (COPD) result in clinical and economic benefits to support the launch of clinical 
interventions to improve adherence?

Causal inference challenges

Time-varying exposure and confounding, informative censoring

Solutions

Carelon Research researchers selected a population composed of COPD patients aged ≥40 years on  
a medication maintenance regimen and examined their medication adherence as a time-varying 
exposure on a daily rolling basis to delineate adherent vs. non-adherent follow-up time periods. 
MSMs were employed to examine the causal impact of adherence on outcomes in the presence of 
time-invariant and time-varying confounders by using repeated propensity-score-based weighting. 
This novel methodology applied an as-treated approach to account for the dynamic nature of 
adherence and its interaction with other time-varying patient factors that affect adherence and 
health and cost outcomes. This design also addressed concerns related to survival bias and 
temporality, which are commonly observed in prior literature examining the impact of adherence.

Results

The study team found that adherence to a COPD maintenance regimen resulted in meaningful 
clinical and economic benefits compared to non-adherence. This study laid the analytic groundwork 
for robustly assessing the effect of medication adherence on outcomes and is transferrable to 
different therapeutic areas. This research was presented at the 2023 Academy of Managed Care 
Pharmacy Annual Meeting, and a manuscript is under development.

Case study #2
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Expertise tailored to you

Carelon Research’s scientists curate the most 
appropriate research questions and identify the 
optimal study design and analytic approach to 
address specific research needs — from satisfying 
regulatory requirements to generating evidence  
to support important public health concerns. 

Research question

Does a national insurer’s Pay-for-Performance (P4P) program for oncology affect the prescribing of 
evidence-based cancer drugs and cancer care spending?

Causal inference challenges

Measured and unmeasured confounding, outcome misclassification, selection bias

Solutions

Carelon Research researchers used various methods, including a difference-in-differences design 
and event study analysis, to account for confounding based on patient and provider characteristics 
and self-selection of physicians who chose to participate in the P4P program. The analysis leveraged 
the geographically staggered, time-varying rollout of the P4P program. Potential misclassification of 
oncolytic regimens in claims was assessed through comparison with gold-standard registry data 
collected through the P4P program.

Results

The P4P program was associated with an increase in evidence-based regimen prescribing as well  
as in cancer drug spending and patient out-of-pocket spending, but no changes in total healthcare 
spending. The claims-based algorithm to identify oncolytic regimens had high concordance with the 
registry data. This research was presented at the 2020 Annual Meeting of the American Society of 
Clinical Oncology and published in the Journal of Clinical Oncology.30

Contact us at  
rwe@carelon.com

Case study #3



Additional resources on causal inference
• Carelon Research ISPOR workshop presentation: Best practices for causal study designs using real-world data

https://www.ispor.org/docs/default-source/intl2022/healthcore-umb-us-ispor-2022-causal-
workshop-29apr2022.pdf?sfvrsn=4dfd182d_0

• Carelon Research perspective’s article: Causal inference for real-world evidence
https://www.carelonresearch.com/perspectives/causal-inference-for-real-world-evidence

Six suggested articles for further reading

• Hernán MA. The C-word: Scientific euphemisms do not improve causal inference from observational data.
Am J Public Health. 2018;108(5):616-619.

• Franklin JM, Platt R, Dreyer NA, London AJ, Simon GE, Watanabe JH, Horberg N, Hernandez A, Califf RM.
When can nonrandomized studies support valid inference regarding effectiveness or safety of new medical
treatments? Clin Pharmacol Ther. 2022;111(1):108-115.

• Prada-Ramallal G, Takkouche B, Figueiras A. Bias in pharmacoepidemiologic studies using secondary health
care databases: a scoping review. BMC Med Res Methodol. 2019;19(1):53. Published 2019 Mar 11.

• Mansournia MA, Etminan M, Danaei G, Kaufman JS, Collins G. Handling time varying confounding in
observational research. BMJ. 2017;359:j4587.

• Lanes S, Brown JS, Haynes K, Pollack MF, Walker AM. Identifying health outcomes in healthcare databases.
Pharmacoepidemiol Drug Saf. 2015;24(10):1009-1016.

• Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless LC, Greenland S. Good practices for quantitative
bias analysis. Int J Epidemiol. 2014;43(6):1969-1985.
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